灵武市工程机械网

当前位置:主页 >> 路面机械

氧化物镀膜材料三

发布时间:2021年08月18日    点击:[0]人次

氧化物镀膜材料(三)

二、蒸镀工艺和条件的研究

影响包装材料质量的因素还有离子轰击电流强度与时间、真空度、基材温度、反应气体通入量、等离子气体的形成与作用、蒸发电子束流强度和蒸镀速度等。

1.离子轰击电流

基材表面状态会严惩影响镀膜的结合牢固度、物理结构及性能。因此,消除基材表面的污物、化学附着物和改善基材表面状态是获得优良镀膜的重要条件。离子轰击方法是将加速正离子撞击基材表面,把表面上的污染物和吸附物质清除掉。另外,高能量离子能使成型时结合渗入基材表面的微尘解离,使基材表面产生许多凹坑,蒸镀粒子进入这些凹坑后与随后形成的镀膜构成一个整体,形成所谓锚接效应,使蒸镀膜的附着牢度增加。离子轰击后基材产生凸凹不平的表面,也增加了基材与蒸镀腊的接触面积,有利于提高两者的结合强度。

我们采用了不同的离子轰击电流并控制不同的时间来处理试样,结果发现获得样品的阻隔性能并不与离子轰击电流强度、时间成正比。离子轰击电流过低,薄膜与基材的结合近牢固度不高,从而影响其性能;离子轰击电流过高,一方面,基材表面附着的尘埃解离出来,另一方面,真空室内的其它杂质在高能量子的轰击下激活成为高能粒子,溅射到膜上形成二次污染,尤其密封真空脂和扩散泵中的油雾等杂质在高真空下形成微粒气雾,在离子激活后附于基材表面,将会明显影响镀膜的附着牢度。因此离子轰击电流强度与时间应控制在一个适合的范围内。

实验还表明,离子轰击效应对一示同的基材也有差别。当基材为尼龙膜时,由于其吸水性较大,离子击激活基材表面水分子,使之汽化,体积迅速膨胀,此时,真空室内真空度急剧下降,经过一段时间后才能达到平衡。

2.真空度

真空度由真空保持系统(机械真空泵、扩散真空泵等)来维持,它能保证蒸镀材料气化后在可能无碰撞的条件下达到基材表面,并且微粒到达基材表面时尚有部分活化能量,利于微粒之间、微粒与基材之间相互作用而形成牢固的蒸镀层。控制真空度的主要因素有两个:

(1)电子枪工作时要求的最小真空度

由于电子枪工作时是将灯丝加热后发射电子,然后经高压电场及磁场作用将电子流集束加速调整后轰击蒸镀原料,使原料氧化蒸发。电子束流的产生和形成必须控制真空度在10-2~10-3Pa以内,否则电子枪无法正常工作。

(2)蒸发镀膜时必须的最小真空度

真空度过低,蒸镀时会增加蒸镀粒子从蒸发源达到基材表面时与残留气体分子的碰撞几率,导致蒸发粒子活化能下降或改变运行方向,既降低了镀膜与基材的结合牢度与成膜质量,又会降低了镀膜与基材的结合牢度与成膜质量,又会降低原料的利用率。从实验结果分析,真空度越高对镀膜质量的提高越有帮助;但真空度达到某一临界以后,真空度的提高对于成膜质量的影响效能逐渐减弱。因此,为了保持真空系统的功率消耗与产品质量的最佳比值,蒸镀操作时真空度应保持在2×10-2~8×10-3Pa的范围内,根据不同的基材适当调整真空度大小。

3.基材温度

镀膜的过程十分复杂,但其主要影响因素是蒸镀原料成膜时的凝聚力、镀膜与基材的吸附力及基材温度,而三者之间又相互关联约束。从蒸发源射出的蒸气流脱离蒸镀原料表面时温度极高能量也较高,在上升通过蒸发区到达基材表面的过程中,由于碰撞、运动中的能量交换导致动能下降,到达基材表面的粒子很快与基材交换能量,迅速沉积在其表面。如果基材表面温度过低,则沉积粒子在基材表面很难扩散和发生相互间的作用,最终形成的膜只能是蒸镀原料微粒的堆积而非有机整体,镀膜疏松导致最终阻隔性能不高。因此在实际生产中为获得致密、高阻隔性能的镀膜,要保持基材具有适当的温度,使沉积到基材表面的粒子能量不会迅速降低到自身不能发生移动,利于高质量镀膜的形成。

4.反应气体通入量的控制

非金属镀膜的阻隔性能与其结构组成的关系十分密切。研制氧化硅镀膜材料时,用SiO、SiO2、SiO+SiO2、+Si+ SiO2、SiO+O2作为蒸镀原料,实验表明,在稳定其它条件的情况下,其镀膜质量差别较大。氧化硅镀膜中硅与氧的比例在1∶1~2之间,其值接近于1时,镀膜阻隔性能优良,但色泽较深,并且稳定性较差,如果长期存放在大气中,由于空气中的氧继续与镀膜发生反应,使镀膜的成分不断改变,结果会使镀膜变疏松,降低其与基材牢固度,使镀膜复合材料的阻隔性下降,严重时会产生镀膜脱落;氧化硅镀膜中氧与硅比例接近2时,镀膜透明度高,稳定性好,但阻隔性能降低。阻隔性能良好,物理和化学性能稳定的氧化硅镀膜中,氧与硅比例在1.3~1.8之间而要获得较为准确的元素比例,只有采用SiO+O2的化学蒸镀方法比较可靠。(未完待续)

声明:

本文来源于网络版权归原作者所有,仅供大家共同分享学习,如作者认为涉及侵权,请与我们联系,我们核实后立即删除。